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ABSTRACT Homeostasis, the creation of a stabilized
internal milieu, is ubiquitous in biological evolution, despite
the entropic cost of excluding noise information from a region.
The advantages of stability seem self evident, but the alter-
natives are not so clear. This issue was studied by means of
numerical experiments on a simple evolution model: a popu-
lation of Boolean network ‘‘organisms’’ selected for perfor-
mance of a curve-fitting task while subjected to noise. During
evolution, noise sensitivity increased with fitness. Noise exclu-
sion evolved spontaneously, but only if the noise was suffi-
ciently unpredictable. Noise that was limited to one or a few
stereotyped patterns caused symmetry breaking that pre-
vented noise exclusion. Instead, the organisms incorporated
the noise into their function at little cost in ultimate fitness
and became totally noise dependent. This ‘‘noise imprinting’’
suggests caution when interpreting apparent adaptations seen
in nature. If the noise was totally random from generation to
generation, noise exclusion evolved reliably and irreversibly,
but if the noise was correlated over several generations,
maladaptive selection of noise-dependent traits could reverse
noise exclusion, with catastrophic effect on population fitness.
Noise entering the selection process rather than the organism
had a different effect: adaptive evolution was totally abolished
above a critical noise amplitude, in a manner resembling a
thermodynamic phase transition. Evolutionary adaptation to
noise involves the creation of a subsystem screened from noise
information but increasingly vulnerable to its effects. Similar
considerations may apply to information channeling in human
cultural evolution.

In the biosphere, great delicacy coexists with turmoil. The
ability to exclude external f luctuations is a hallmark of living
organisms, one whose survival value is usually taken to be self
evident. This belief rests on two implicit assumptions: (i)
stability is more conducive to functioning than chaos, and (ii)
natural selection is able to recognize and favor such stability.
The first assumption, although intuitively plausible, is un-
proven; more precisely, it is not obvious that the strategy of
excluding noise from the organism, though simple to describe,
is actually the most likely way for the ‘‘blind watchmaker’’ of
evolution to maximize fitness in a noisy environment. The
second assumption may be challenged if the noise varies
unpredictably on a time scale longer than the generation time
of the organism, so that there is no direct competition between
individuals based on noise resistance.

Here, I report results of numerical experiments to test these
assumptions by determining whether noise exclusion would
evolve spontaneously in a simple computational model of
evolution: a population of (initially) random Boolean networks
(logical circuits) selected for performance of a curve-fitting
task while subjected to noise. Noise that was identical in every

generation was never excluded, but was incorporated into the
computation, despite its complexity and lack of relation to the
desired output, so that the network became ‘‘imprinted’’ with
that particular noise pattern and required it to function. The
noise sensitivity of the network increased as evolution pro-
ceeded. Noise that was completely random from generation to
generation was eventually excluded from the output and most
network elements causally connected to the output (usually
after a period of increasing noise sensitivity), forming a
‘‘protected subsystem’’ to compute the output function. The
transition between these two regimes was not smooth: if the
noise varied gradually over several generations, evolution
toward noise exclusion was punctuated by ‘‘information catas-
trophes,’’ during which fitness was abruptly lost by maladaptive
selection events that reintroduced noise information. This
behavior was insensitive to the details of the model. Noise
entering the selection process rather than the organism had
still a different effect: evolution was totally abolished above a
critical noise intensity, in a manner resembling a thermody-
namic phase transition.

Cell differentiation and morphogenesis involve highly non-
linear dynamic interactions among many genes, with combi-
natorial specification of cell fate by several gene products (1).
Random Boolean networks have been proposed as a model of
this process (2–6), although I do not demand this concrete
interpretation here—they may also be a useful model of the
more complex processes of cultural evolution. The model is a
simple example of a highly nonlinear dynamical system defined
by a collection of digital information (‘‘genome’’), which can
be tested for fitness in performing a task—computing a
specified (but arbitrary) target function. As such, it is an
example of a genetic algorithm (7). Over the past few years,
there has been an extensive development of this field of
computer science (8–11). Most of this work has been directed
toward the development of practical computer programs that
attack optimization problems by using methods suggested by
biological evolution and to understanding how these programs
function and may be improved. These methods have also been
applied to aid in the understanding of natural molecular and
prebiotic evolution (12–15). In contrast, the present model was
chosen for its ability to display explicitly the flow of informa-
tion within the organism, to examine the impact of noise
information entering the machinery of the organism directly
from the environment. As an open statistical-mechanical
system, an organism must be subject to such inputs unless
excluded by an active process; however, the role this plays in
evolution seems not to have been examined previously. This
approach was made possible by the great increase in computer
power since earlier studies of Boolean network evolution
(16, 17).

METHODS
The model consists of a (simulated) population of M organ-
isms, each of which is a network, initially randomly connected,
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of n 5 '100 Boolean circuit elements, each element having
two inputs, x and y, and one output, z (Fig. 1). The output of
an element is given by zt 5 f(xt21, yt21), where f stands for one
of the 16 possible Boolean functions of two variables, and t is
the discrete time. In the notation of Kauffman (18), the
organism is an NK Boolean network, with K 5 2.† A random
Boolean time series (‘‘noise’’) is connected to the first input
terminal of each of several (typically 4–20) elements (the
second input terminals of those elements, as well as both inputs
of all other elements, receive the outputs of other network
elements). The ‘‘phenotype’’ output of the network is an
integer time series obtained from a subset of m elements
(‘‘output elements,’’ not otherwise distinguished from the
others) by counting the number of elements in the TRUE state
(0 . . . m). In each generation, each network was developed
through 100 time steps, and the ‘‘fitness’’ F determined as the
negative of the mean squared difference between the network
output and the target function. [The word ‘‘develop’’ is used to

refer to changes over the dynamical time of a single network
(by analogy to development of an organism), whereas ‘‘evolve’’
always refers to evolutionary time (generations).] The popu-
lation was expanded by replicating each organism R times,
allowing mutations, and then reduced to its original size by
selecting the best M networks ranked by fitness. Each mutation
consisted of either (i) randomly moving one of the input
connections of a randomly chosen element, (ii) randomly
changing the Boolean function of a randomly chosen element,
(iii) deleting an element, or (iv) adding an element. Mutations
that disconnected a noise input were not allowed. The numbers
of mutants per generation and mutations per mutant were
binomially distributed on the basis of a fixed mutation rate m
per network element. A relatively large mutation rate was used
in some of the simulations shown in the figures to speed
convergence; qualitatively similar results were obtained with a
lower more realistic mutation rate, over a larger number of
generations. Including mutations of types (iii) and (iv) did not
seem to increase the adaptability of the model or introduce any
novel phenomena, so most of the results displayed below were
obtained with a fixed value of N, with mutations of types (i) or
(ii) selected at random with probability 0.5. Recombination
was not considered in the model, to avoid an arbitrary choice
about how to recombine two different Boolean networks. M
and R determine the effective intensity of selection; a partic-
ularly simple case is strong selection (M 5 1, R 5 2), in which
a single ‘‘wild type’’ is compared with a single mutant in each
generation, the network of greater fitness replacing the parent
in the following generation. (There are a total of RzM repli-
cates, including wild type and mutants, therefore R 5 2, rather
than 1 for the case where a single wild type is compared with
a single mutant.)

†As K is increased, large randomly constructed autonomous Boolean
networks display a phase transition from a ‘‘frozen’’ phase, in which
almost all elements are locked in constant states, to a ‘‘chaotic’’ phase,
in which a finite fraction of elements fluctuate (1, 6). K 5 2 lies on
the boundary between phases, which has been suggested to be a
region of high ‘‘evolvability’’ (16). By interpolating K continuously
between 1 and 3 (using networks of randomly mixed elements with 1,
2, or 3 inputs) and using biased distributions of Boolean element types
(with an adjustable probability q that any bit in the binary represen-
tation of the element is 1), I found that the most rapid evolutionary
adaptation (in the absence of noise) occurs in a strip of parameter
values lying in the frozen phase alongside the phase boundary as
calculated by mean field theory (5). The qualitative features of all
these models were the same as those shown here for K 5 2, q 5 0.5.

FIG. 1. (A) A Boolean circuit element. There are 16 possible element types, numbered 0–15. The Boolean function of the element is determined
by interpreting its inputs (x, y) as a 2-bit binary number and using this as a pointer to a bit in the binary representation of the element number,
giving the output z (0 5 FALSE, 1 5 TRUE). (B) Truth table describing Boolean function 12. (C) Fragment of a Boolean network, showing the
propagation of injected noise information in bold. Note that the noise information is blocked at element 12, because Boolean function 12 is
independent of its x input, as seen from the truth table.
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In all of the figures, fitness is represented by the population
average of the mean-squared error in fitting the target func-
tion, denoted by 2F. When the noise realization was different
for each organism and generation (Fig. 3), the plotted value is
expected or ‘‘long-term’’ fitness (in the sense of Fig. 4B), which
was obtained by exercising each of the M networks in each
generation with multiple random noise realizations (10–100,
depending on computation time constraints, only one of which
was the ‘‘real’’ one used for determining selection) and aver-
aging the results. With the exception of Fig. 5, each curve
represents the result of a single evolution run; all are highly
representative of reproducible behavior of the model, al-
though quantitative details (e.g., the duration of the plateau
phase in Fig. 3B, the number and location of information
catastrophes, etc.) varied from run to run. The ‘‘noise vulner-
ability’’ (Fig. 3) denoted by Vnoise was determined as follows:
(i) in each generation, the networks in the population were
exercised with multiple independent random noise realiza-
tions; (ii) noise-sensitive network elements were identified as
those whose output state differed, at any time step, between
developments in the presence of different noise realizations;
(iii) the number of noise-sensitive elements was expressed as
a fraction of the number N of elements in the network, and the
number of noise-sensitive output elements was expressed as a
fraction of the number m of output elements; (iv) the resulting
fractions were averaged over the M networks in the population.
The resulting quantity is therefore a measure of how widely
noise information is propagated in the network. An analogous
quantity, Vsignal, was computed for the model in which an
information bit was included in the input that predicted which
of two target functions would be used (Fig. 3C), by exercising
the networks with both values of this bit and counting the
number of elements whose states were affected by its value.

The analytical model of selection noise effects (see below
and Fig. 5) was analyzed as follows: assuming the limit of a
large population, the distribution of apparent fitness will be the
sum of two Gaussian with centers 6Dy2 and weights p and
1 2 p, where p is the fraction of the population of the
high-fitness genotype. The mean fitness is then F 5 2(1 2
2p)Dy2. The effect of one generation of selection can be found
by first readjusting p to take into account the effects of
mutation and then integrating the two Gaussians from M to
infinity to obtain the fractions of the population in each
genotype after selection. This procedure gives a recurrence
relation (not shown) for the new value p9 in terms of p. This
recurrence has two fixed points, one stable and the other
unstable; iteration over many generations will cause the pop-
ulation to converge to the stable one. In the absence of
mutation, the fixed points are p1 5 0 and p2 5 1, corresponding
to fixation of the low- and high-fitness genotypes, respectively,
with the latter stable. If m12 is ignored, p1 remains zero; solving
for the critical stability of this point by dp9ydp 5 1u p 5 0 gives
Eq. 1. The other fixed point, p2, crosses zero at the critical point
and becomes stable; its location was determined by numeri-
cally iterating the recurrence and is plotted in Fig. 5B.

Adaptation to Stereotyped Noise: Noise Imprinting. To
determine whether an evolving organism would exclude noise
on the basis of its complexity and lack of relationship to the
task, the same single random sequence of 100 noise bits was
injected into all organisms in all generations. This ‘‘stereotyped
noise’’ may be regarded as representing a stable complex
feature of the environment, not necessarily temporal, that
carries no useful information about the task that the organism
must carry out to ensure its survival. Intuition suggests that
evolving the ability to compute accurately the target function
must involve the creation of some kind of order in the network
structure, which would be severely disrupted by the noise.
Nevertheless, population fitness improved steadily over two
orders of magnitude (Fig. 2A), regardless of what noise
realization was present (including none). The network output,

initially random (Fig. 2C), evolved to a good approximation of
the target function (Fig. 2D). Intuitively, the simplest way to
achieve this would be to ignore (i.e., exclude) the noise
information, but this was never observed. Instead, the fraction
of elements whose states depended on noise information
increased to nearly 100% over the course of evolution (Fig.
2B), apparently because of the increased functional connec-
tivity required to carry out the task. As a result, the network
became dependent on the noise and failed completely if it was
removed (Fig. 2E).

This surprising result may be explained as follows. Because
noise enters the network at several points, multiple mutations
are required to exclude it. The advantage of any one mutation
is likely to be small, because the quasichaotic nonlinear
dynamics will amplify the remaining noise. Simultaneously,
evolution is restructuring the network to perform the task, and
any adaptation that makes incidental use of noise information
will create a fitness barrier to future removal of that informa-
tion. The result is a symmetry breaking‡ that commits the
organism to retaining the noise, leading to ‘‘noise imprinting.’’
This phenomenon may be analogous to a spontaneous break-
ing of inversion symmetry that has been observed in the
evolution of computation by cellular automata (19). Remark-

‡The fitness depends only on the target function and the network
output, with no explicit dependence on the noise. One would
therefore expect the optimum network to be symmetrical under any
change in the noise, i.e., noise insensitive. The overwhelming majority
of randomly chosen networks, however, will have some connection of
noise to the output. It is therefore likely that the initial stages of
evolution will produce a partially adapted network that violates the
symmetry. Once this occurs, there may be no evolutionary path to a
symmetrical solution that does not pass through structures with very
low fitness, so the asymmetry becomes permanent or self reinforcing.

FIG. 2. Evolution in the presence of stereotyped noise. M 5 100,
R 5 2, m 5 0.005yelementygeneration. (A) Fitness improves steadily
over two orders of magnitude. Labels c, d, and e indicate the
generations used to generate the corresponding lower panels. (B)
Noise vulnerability Vnoise, defined as the population mean of the
fraction of network elements whose states depend on noise informa-
tion, for the 25 output elements (solid) and the set of all elements
causally connected to the output (dashed). Vnoise invariably increases
to near unity as evolution progresses, indicating that the network
structure that evolves has higher functional connectivity than the
randomly constructed starting network. (C) Random output of the
starting network (solid), the target function (dotted), and the fixed
randomly chosen binary noise pattern (Lower). (D) The network
evolved after 2,500 generations generates a good approximation of the
target function. (E) The same network as in D but operated in the
absence of noise fails completely, indicating that the evolved network
has been ‘‘imprinted’’ by the arbitrary noise sequence present during
its evolution and requires it to function.
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ably, if each organism in each generation was randomly
assigned to one of a few different stereotyped noise environ-
ments, this commonly resulted in simultaneous imprinting to
all environments (one of which then had to be present for the
organism to function) rather than noise exclusion. The exis-
tence of noise imprinting shows that organisms can evolve to
become ‘‘adapted’’ to, and dependent on, features of the
environment that have no direct influence on fitness—an
important consideration when trying to understand the (ap-
parent) adaptations seen in nature.

Adaptation to Unpredictable Noise: Noise Exclusion and
Information Catastrophe. In addition to complexity and ir-
relevance, a third characteristic of most noise is unpredictabil-
ity. To examine its effect, the model was operated with a
different random noise realization for each organism in each
generation. In this case, noise exclusion evolved reliably. In
some cases, the number of network elements influenced by
noise decreased more or less steadily, as in Fig. 3A. More
commonly, there was an initial period of increasing noise
dissemination, superficially similar to that observed with ste-
reotyped noise (Fig. 3B). Surprisingly, fitness continued to
improve slowly during this period. Detailed examination of
element statistics showed that this was because of adaptations
that decreased noise-related variance of the output function by
delaying the buildup of noise at the output elements and
anticorrelating their states (not shown).§ This ‘‘noise-filtering’’
effect was invariably followed by actual noise exclusion. Once
this exclusion began, it proceeded rapidly, over '20 genera-
tions. Noise information was excluded completely from the

output elements,¶ as well as from the great majority of
elements causally connected to the output elements, creating
a noise-free subsystem to compute the output function. Noise
exclusion was essentially irreversible—only minor effects of
noise on fitness were observed in subsequent generations. The
noise-exclusion process was able to separate noise from useful
information even when both were random and unpredictable
and both entered through the same inputs (Fig. 3C).

An intermediate case between stereotyped and totally ran-
dom noise is noise that varies gradually over a number of
generations. This noise produced a feature not seen in either
extreme case: episodes of catastrophic loss of fitness because
of reversal of noise exclusion (Fig. 3D). These information
catastrophes were caused by maladaptive selection events in
which a mutation that permitted noise information to enter the
protected subsystem was accepted because it appeared bene-
ficial in a particular noise environment that happened to be
present in that generation (Fig. 4). Full-scale catastrophes
were seen only if the noise correlation time was longer than the
time required for the maladaptive mutation to capture the
population, roughly log(M)ylog(R) generations. This expres-
sion is zero for M 5 1, and information catastrophes occurred
in the strong selection model even when the noise was totally
randomized between generations. For difficult problems, such
as exclusion of many noise inputs or extraction of a predictive
signal from noise, the population model (M 5 100) was much
more powerful than the strong selection model (M 5 1), both
because it prevented mutants that were viable in only a fraction
of noise environments from producing information catastro-
phes, and because it was able to retain them as raw material for

§In contrast, if a network evolving in the presence of stereotyped noise
is exercised with random noise realizations (instead of the fixed one
that it is evolving under), mean fitness remains constant (and poor)
while noise related fitness-variance increases markedly, showing that
the evolution processes on the plateau in Figs. 2B and 3B are funda-
mentally different.

¶This exclusion might be expected, because any variability in the
output would preclude achieving the unique optimum fit to the target
function. Note, however, that only the number of TRUE output
elements is under direct selection pressure, not their individual
values.

FIG. 3. Evolution histories in the presence of random noise, different in each generation, showing noise vulnerability (see Fig. 2 and text) and
fitness; M 5 100, R 5 2 (A–C), or 4 (D). (A) Fitness improves as noise is steadily excluded from parts of the network, leading to a network with
a protected subsystem consisting of noise-free output elements (Upper, solid) and the elements that compute the output (Upper, dotted). (B) The
more common pattern in which the restructuring of the network by evolution initially increases the dissemination of noise information, despite the
selective advantage that would accrue from its elimination. During this period, fitness slowly improves as a result of adaptations that ‘‘filter’’ the
noise, reducing noise-related output variance. This is followed by a phase of rapid irreversible noise exclusion, which allows further evolution to
maximum fitness. (C) The target function was randomly switched between step functions at t 5 30 and t 5 70, and a bit predicting which step function
would be used was intercalated into the even time bins of the noise input, while the odd bins contained only random noise. A network evolved
that was able to decode the inputs, creating a protected subsystem from which the noise was excluded (Middle) while the predictive signal was widely
distributed (Top). (D) Noise correlated over a number of generations was produced by randomly resetting one randomly chosen bit of the noise
array in each generation. In this environment, noise exclusion evolves, but can be reversed by maladaptive selection events (see Fig. 4), causing
‘‘information catastrophes’’ during the latter stages of evolution.
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future evolution. While these problems were being worked on,
the population model maintained a high degree of genetic
diversity, which then collapsed to a few genotypes after an
optimal solution had been found. This diversity appeared to
make a major contribution to evolvability, despite the absence
of recombination from the model. This behavior is of interest
in relation to the recent observation of prolonged persistence
of a high degree of genetic diversity in experimental evolution
of steady-state bacterial cultures (20, 21). The importance of
population size for the effectiveness of genetic algorithms,
particularly in the presence of selection noise (see below), is
well recognized (22). However, its origins are subtle and have
been shown to depend critically on the relationship between
genomic representation and phenotype, and on the precise
definition of evolvability (23). Most analyses have assumed
(explicitly or implicitly) a linear genome with recombination by
crossing over and a substantial correlation between the fit-
nesses of neighboring genotypes, characteristics that are absent
or dubious in the Boolean network model. The effects of noise
entering the organism itself (e.g., information catastrophes)
have not been considered previously. Because of the slow
logarithmic dependence on M, information catastrophes are
likely to remain a significant feature in populations too large
to simulate.

Critical Effect of Selection Noise. Noise entering the fitness
measurement rather than the organism had a different effect.
Steady-state fitness was degraded, as has been described for
other genetic algorithms (24, 25), but above a critical noise
amplitude all adaptive evolution was lost (Fig. 5). This appears
to be because of an ‘‘error catastrophe’’ similar to that in
theories of molecular evolution (26, 27), but involving errors
of selection rather than replication. It can be explained qual-
itatively by a simple analytical model. Assume a population
comprised of two genotypes, 1 and 2, with the latter having a
fitness that is greater by an amount D, and mutation rate mij per
generation per organism from genotypes i to j. The two
genotypes must be understood as representing ensembles of
genotypes of low or high fitness. Because there are many more
of the former than the latter, m21 .. m12. In each generation,
select those organisms whose apparent fitness, including
Gaussian noise of standard deviation s, is greater than the

population mean. It is relatively straightforward (see Methods)
to show that this process will converge to a population
consisting almost entirely of the less fit genotype, unless
(neglecting m12):

D . Dcrit 5 Î2serf21S m21

1 2 m21
D < 1.25331m21s, [1]

where the far right-hand side is the first-order approximation
for small mutation rate. The combined effects of deleterious
mutation and erroneous selection therefore set a fitness
threshold limiting the ability of evolution to capture a ‘‘shal-
low’’ ecological niche, i.e., one whose contribution to mean
fitness is small compared with the fluctuations of overall
fitness. This may be considered as a (negative) entropic
component of fitness.

DISCUSSION

As a physical system, a living organism is bombarded by
information from its environment. We can classify this infor-
mation into several categories. The first is selection pressure.
The taller giraffe can reach more leaves, so it is more likely to
survive; in this way, the information that trees are tall is
conveyed to the evolving population. This is the kind of
interaction most often considered in evolutionary biology.
Information also enters the individual organism directly. Some
of this information may be useful for survival (there are leaves
at the top of this tree). Most is irrelevant, at best useless, and
more than likely to interfere with the adaptive functions of the
organism. Teleologically, we would expect the organism to
exclude this noise. These simulations of an evolution model in
which information flow is explicit were undertaken to deter-
mine whether Darwinian selection makes these distinctions
and, if so, how. The results show that the idea of homeostasis
can be extended from the simple regulation of analog variables
(e.g., body temperature, pH, electrolyte concentrations) to the
creation of subsystems from which ‘‘digital’’ forms of irrelevant
information are excluded. This may be important in the most
nonlinear parts of biology: developmentymorphogenesis, be-
havioryneurobiology, and cultural evolution. For fundamental
thermodynamic reasons, excluding noise information always
has a cost. The fact that organisms are willing to pay this cost
confirms our intuition that increasingly complex adaptations
require machinery that is increasingly vulnerable to disruption.
However, the criteria by which evolution identifies irrelevance
are more subtle than might have been expected and are subject

FIG. 4. Mechanism of the information catastrophe, studied in the
strong selection model (M 5 1, R 5 2) in which it occurs even with
uncorrelated random noise. Note logarithmic scale of generations. (A)
Evolution interrupted by a typical information catastrophe. (B) Lead-
ing edge of the information catastrophe at high resolution. It begins
with a maladaptive selection event (arrows) in which a mutation that
recouples noise into the protected subsystem is accepted because it
increases fitness (decreases error) with the particular noise realization
present in that generation, although its long-term fitness (expected
fitness over all noise realizations) is poor. In subsequent generations,
with other noise realizations, the short-term fitness is also poor,
allowing the acceptance of many mutations that damage the previously
evolved structure of the network, producing a cascade of maladaptive
selections. (C) The distribution of fitness of the maladaptive network
over all noise realizations is extremely nonnormal, allowing it to
subvert the selection process by appearing highly fit in a small fraction
of noise environments.

FIG. 5. Critical behavior caused by selection noise. (A) Uniformly
distributed white noise was added to the target function. Each point
represents an independent evolution history under strong selection (M
5 1, R 5 2, 1,000 elementsyorganism), showing the (negative of)
fitness at the end of 105 generations. Above the critical noise ampli-
tude, no adaptive evolution takes place. (B) Fitness as a function of
selection-noise amplitude for the two-genotype analytical model used
to derive Eq. 1, with m21 5 0.47.
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to error, sometimes catastrophic, for reasons that may be
fundamental.

Two such error phenomena emerged, unexpectedly, from
the simulations. Noise imprinting, which was very robust, may
be a prototype of a general form of symmetry breaking that
leads to the evolution of structures that are suboptimal and
unnecessarily dependent on fortuitous features of the envi-
ronment. Recognizing it unambiguously in the evolutionary
record will be complicated by the fact that nature, unlike the
model, does not provide us with an a priori partitioning of the
physical interactions between organism and environment into
selective forces and noise. It might also be found in experi-
mental evolution; as a gedanken experiment, one might imag-
ine that flies reared for many generations in a container with
polka-dot wallpaper become unable to orient in its absence.
However, the symmetry breaking probably occurs early in the
evolution of a new adaptive trait and might not affect one that
is already established.

Information catastrophe is a manifestation of the difficulty
faced by evolution in recognizing noise by its unpredictability.
No single organism is aware of this unpredictability—it sees
only one realization of the noise—and, depending on the rate
of fluctuation of the noise, no single generation may be aware
of it either. Evolution must integrate information over time
and population to recognize and exclude the noise, and it
makes mistakes. This behavior was unchanged if the model was
altered in various ways: (i) by using a fixed number of network
elements; (ii) by using only mutations of types i or ii individ-
ually; (iii) by connecting an independent noise source to each
of the input elements in a network; (iv) by introducing noise
only by randomly initializing the states of the input elements;
(v) by generating the noise endogenously by the chaotic
dynamics of part of the network which was not reinitialized in
each generation; (vi) by interpreting the states of the output
elements as bits of a binary number, rather than counting
them; (vii) by using only two Boolean functions: f8(x, y) 5 x&y
and f5(x, y) 5 not x; (viii) by using Boolean networks with K .
2. Because any finite automaton can be represented as a
Boolean network, this qualitative behavior may be generic to
a broad class of highly nonlinear systems. The crucial element
appears to be internal dynamics sufficiently chaotic to cause a
wide dispersion of fitness in different noise environments (Fig.
4C). In the Boolean network model, this noise sensitivity is
induced by evolution itself (Figs. 2B, 3B).i Thus, the evolution
process becomes a competition between the increasing noise
sensitivity that is a side effect of the adaptations required for
more accurate performance of the task and the improving
noise exclusion. Real physical evolving systems are dissipative
thermodynamic structures in which a subsystem cannot be
physically disconnected from the parent, because the latter
supplies the free energy to drive its irreversible processes. It
therefore remains vulnerable to corruption by information
from the parent system, with potentially catastrophic conse-
quences. I give this paradox the name ‘‘dynamic irony.’’

Several questions invite further study using the Boolean
network model. The detailed structural mechanisms involved
in noise imprinting and in the progressive exclusion of unpre-
dictable noise (Figs. 2B, 3B) are not known. The effects of
recombination need to be explored. Random recombination
might prevent the maladaptive symmetry breaking manifested
as noise imprinting; this might be an additional reason for the
great evolutionary success of sexual reproduction. It is also of
interest to ask whether the phenomena discussed above have
a parallel in cultural evolution, which probably proceeds in
large part by replication of information with random innova-
tion and selection (28). One possibility is that the creation of
specialized institutions with their own values and belief systems
is an analog of the protected subsystem. The compartmenta-
tion of information required to maintain the stability of such
institutions would then represent a generalized form of ho-
meostasis, subject, perhaps, to some of the same weaknesses
revealed in the model.
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